
Int J Softw Tools Technol Transfer (2005) 7: 351–360 / Digital Object Identifier (DOI) 10.1007/s10009-004-0165-6

Distributed functional and load tests forWeb services

Ina Schieferdecker1, George Din2, Dimitrios Apostolidis3

1Technical University Berlin/Fraunhofer FOKUS, Berlin, Germany
e-mail: ina@cs.tu-berlin.de
2Fraunhofer FOKUS, Berlin, Germany
e-mail: din@fokus.fraunhofer.de
3Testing Technologies, Berlin, Germany
e-mail: apostolidis@testingtech.de

Published online: 25 January 2005 – © Springer-Verlag 2005

Abstract. System-level testing considers functionality
and load aspects to check how a system performs for sin-
gle service requests and scales as the number of service
requests accessing/using it increases. This paper presents
a flexible test framework including functional, service in-
teraction and load tests. It is generic in terms of being
largely independent of the system to be tested. The pa-
per discusses the automation of the test framework with
the Testing and Test Control Notation TTCN-3 and also
presents an implementation of the test framework using
a TTCN-3 toolset. The test framework is exemplified
for Web service tests and demonstrates distributed func-
tional and load tests for a specific Web service.

Keywords: Web services – Test specification –
Distributed tests – TTCN-3 – Test frameworks

Introduction

The Testing and Test Control Notation TTCN-3 has been
developed by the European Telecommunication Stan-
dards Institute (ETSI) to address testing needs of modern
Telco and IT technologies and to widen its scope of appli-
cability. TTCN-3 enables systematic, specification-based
testing for various kinds of tests including functional,
scalability, load, interoperability, robustness, regression,
system, and integration testing. TTCN-3 is a language to
define test procedures for black-box testing of distributed
systems. It allows an easy and efficient description of com-
plex distributed test behavior in terms of sequences, al-
ternatives, and loops of stimuli and responses. The test
system can use a number of test components to perform
test procedures in parallel. TTCN-3 is a modular lan-
guage that has a similar look and feel to a typical pro-
gramming language. However, in addition to typical pro-
gramming constructs, it contains all the important fea-

tures necessary to specify test procedures and test cam-
paigns like test verdicts, matching mechanisms to com-
pare the reactions of the SUT (system under test) with
the expected range of values, timer handling, distributed
test components, the ability to specify encoding informa-
tion, synchronous and asynchronous communication, and
monitoring.
This paper discusses the application of TTCN-3 for

system-level tests. It describes a test framework with pre-
defined test scenarios and test setups that can be adapted
to different systems under test by exchanging the mod-
ules for the basic functional tests only. The basic idea is to
define a hierarchy of tests for service interaction, scalabil-
ity, and load tests by reusing basic functional tests for the
system under test. Test components are used to emulate
system clients. These test components perform the ba-
sic functional tests to evaluate the reaction of the system
to selected service requests or complex service request
scenarios. The combination of test components perform-
ing different basic functional tests and being executed in
parallel leads to different test scenarios for the systems
under test and supports the evaluation of various system
aspects. Parameterization of this test framework enables
flexible test setups with varying functional and perform-
ance load.
The test framework uses a set of basic functional tests

for the individual services of a system. Each of these basic
functional tests is performed in separate functional tests.
A service interaction test checks simultaneous requests
of different services by applying several basic functional
tests concurrently. A separate load test for individual ser-
vices checks for scalability and load aspects of the selected
service by using several test components with the same
basic functional test. A combined load test checks a mix-
ture of requests for different services. These combined
load tests use test components performing different func-
tional tests. All the tests return not only a test verdict



352 I. Schieferdecker et al.: Distributed functional and load tests for Web services

but also the response times for the individual requests.
A key element of this test framework is its genericity,
being largely independent of the concrete system to be
tested. In addition, it can be extended to test further as-
pects.
The application of this test framework to an example

Web service is presented. At first, an overview is given
of Web services, XML, and SOAP as well as a discus-
sion of testing Web services. Then the test framework is
presented. The architecture of the execution environment
we used to run the presented test suite is introduced. Se-
lected details of the test framework and its implementa-
tion are discussed. Before concluding the paper, measure-
ment results from experiments with load tests are given.

Web services

A Web service is a URL-addressable resource returning
information in response to client requests. Web services
are integrated into other applications or Web sites, even
though they exist on other servers. So for example, a Web
site providing quotes for car insurance could make re-
quests behind the scenes to a Web service to get the esti-
mated value of a particular car model and to anotherWeb
service to get the current interest rate.
XML stands for Extensible Markup Language. As

its name indicates, the primary purpose of XML was
for the marking up of documents. Marking up a docu-
ment consists of wrapping specific portions of text in
tags that convey a meaning, thus making it easier to
locate them and also to manipulate a document based
on these tags or on their attributes. Attributes are spe-
cial annotations associated with a tag that can be used
to refine a search. An XML document has with its tags
and attributes a self-documenting property that has been
rapidly considered for a number of applications other
than document markup. This is the case with not only
configuration files for software but also telecommunica-
tions applications for transferring control or application
data like, for example, Web pages.
XML follows a precise syntax and allows for check-

ing well-formedness and conformance to a grammar using
a Document Type Definition (DTD) that could either
be interpreted as a BNF-like grammar specification or in
some cases as a data type. A DTD consists of a set of pro-
duction rules for elements that have a name and describe
its content as empty, any, mixed, choice, or sequence. An
element can also contain attributes that are declared sep-
arately.While DTDs are appropriate for marking up text,
they are very limited for other applications because the
two basic types CDATA and PCDATA are too general for
any precise data typing as in other widely used program-
ming languages. Consequently, the new XML data typing
model called Schema was developed. XML schemas [2]
are defined using the same basic XML syntax of tags and
end tags and actually follow a well-defined DTD. Sec-

Fig. 1. XML schema for the Dino Web service

ond, XML schemas are true data types and contain many
of the data typing features found in most of the recent
high-level programming languages. The central concept
of XML schemas is the building-block approach of defin-
ing components that consist themselves of type defini-
tions and element declarations. XML schemas are very
flexible and allow describing the same rules in many dif-
ferent ways depending on the use of type inheritance,
restrictions and extensions, and global and local defini-
tions. Basically, the embedded, flat-catalog and named
type structuring approach are distinguished.
This paper uses a dinosaurian databaseWeb service as

an example: a dinosaur registration is given as a collection
of information about the dinosaur. It is described in terms
of name, time, place, length, and location (Fig. 1).
The embedded method derives from the nested tag

mechanism of XML itself. In this method, elements are
defined where they are used inside the hierarchy. Conse-
quently, there is no need to name a local type – it is called
an anonymous type. Eventually the leaves of the tree that
constitutes an embedded type definition are composed
exclusively of either primitive types or already defined
types. This implies that a local definition can be used only
once and that there is no need for reusability in a specific
application. The flat-catalog approach uses the concept of
substitution. Each element is defined by reference to an-
other element declaration. Named types are the closest
to traditional computer language data typing. Each elem-
ent has a name and a type name. Each subtype is defined
separately.
SOAP (Simple Object Access Protocol) is a simple

mechanism for exchanging structured and typed infor-
mation between peers in a decentralized distributed
environment using XML [4, 5]. SOAP as a new tech-
nology to support server-to-server communication
competes with other distributed computing technologies
including DCOM (Distributed Component Object
Model), CORBA (Common Object Request Broker
Architecture), RMI (Remote Method Invocation), and
EDI (Electronic Data Interchange). Its advantages are
a lightweight implementation, simplicity, open-standards
origins, and platform independence.



I. Schieferdecker et al.: Distributed functional and load tests for Web services 353

Testing of Web services

Testing of Web services (as for any other technology or
system) is useful for preventing late detection of errors
(possibly by dissatisfied users); these typically require
complex and costly repairs. Testing enables the evalua-
tion and approval of system qualities and the detection of
errors beforehand. An automated test approach helps in
particular to efficiently repeat tests whenever needed for
new system releases in order to assure the fulfillment of
established system features in the new release.
First approaches towards automated testing with pro-

prietary test solutions exist [10]; however, with such tools
one is bound to the specific tool and its features and ca-
pabilities. Specification-based automated testing, where
abstract test specifications independent of the concrete
system and independent of the test platform are used,
are superior to proprietary techniques: they improve the
transparency of the test process, increase the objective-
ness of the tests, and make test results comparable. This
is mainly due to the fact that abstract test specifica-
tions are defined in an unambiguous, standardized nota-
tion, which is easier to understand, document, communi-
cate, and discuss. However, we go beyond “classical” ap-
proaches towards specification-based automated testing,
which till nowmainly concentrated on automated test im-
plementation and execution: we consider test-generation
aspects as well as the efficient reuse of test cases in a hier-
archy of tests.
Testing of Web services has to target three aspects:

the discovery of Web services (i.e., Universal Description,
Discovery, and Integration, UDDI – which are not
considered here), the data format exchanged (i.e.,
Web Services Description Language, WSDL), and
request/response mechanisms (i.e., SOAP). The
data format and request/response mechanisms can
be tested within one approach: by invoking requests and
observing responses with test data representing valid
and invalid data formats. Since a Web service is a remote
application that will be accessed by multiple users, not
only functionality is important in terms of sequences of
request/response and performance in terms of response
time but also scalability in terms of functionality and
performance under load conditions.1

The test framework

We have developed a hierarchy of tests for evaluating
Web services for functional and load aspects. The basic
idea is to define service interaction, scalability, and load
tests by reusing basic functional tests for the Web service.
Test components are used to emulate Web service clients.
These test components perform basic functional tests to

1 Please note that further test goals for Web services such as
availability, resilience etc. exist, which however are not considered
here.

Fig. 2. Test hierarchy for Web services

evaluate the reaction of the Web service to their requests.
The combination of test components performing different
basic functional tests in parallel leads to different test sce-
narios for the Web service. Parameterization of this test
framework enables flexible test setups with varying func-
tional and performance load.
The basis of the test framework (Fig. 2) is a set of ba-

sic functional tests for the individual services of a Web
service. It consists of different kinds of tests:

– Separate functional tests for each Web service aspect.
– A service interaction test for simultaneous requests of
different services.
– A separate load test for individual service checks for
scalability and load aspects.
– A combined load test for a mixture of requests for
different services. These combined load tests use test
components performing different functional tests.

All the tests return not only a test verdict but also the
response times for the individual requests.
An important aspect of this test framework is its gener-

icity of being to a large degree independent of the concrete
Web service to be tested.Besides the basic functional tests,
fixed test case definitions can be given for the separate
functional, service interaction, separate load, and service
mixture load. Further test patterns can be envisaged.
The test framework has been realized with the Testing

and Test Control Notation TTCN-3 [7], which has been
developed by the European Telecommunication Stan-
dards Institute ETSI not only for telecommunications but
also for software and data communication systems. Like
any other communication-based system, Web services are
natural candidates for testing using TTCN-3.

Overview of TTCN-3

TTCN-3 is a language to define test procedures for black-
box testing of distributed systems and is applicable to



354 I. Schieferdecker et al.: Distributed functional and load tests for Web services

both intrusive and nonintrusive testing. Stimuli are given
to the SUT; its reactions are observed and compared with
the expected ones. On the basis of this comparison, the
subsequent test behavior is determined or the test ver-
dict is assigned. If expected and observed responses differ,
then a fault has been discovered that is indicated by a fail
test verdict. A successful test is indicated by a pass test
verdict.
TTCN-3 allows an easy and efficient description of

complex distributed test behavior in terms of sequences,
alternatives, loops, and parallel stimuli and responses.
Stimuli and responses are exchanged at the interfaces of
the system under test, which are defined as a collection
of ports. The test system can use a number of test com-
ponents to perform test procedures in parallel. Like the
interfaces of the system under test, the interfaces of the
test components are described as ports.
TTCN-3 is a modular languagewith a similar look and

feel to a typical programming language. However, in add-
ition to typical programming constructs, it contains all
the important features necessary to specify test proced-
ures and campaigns for functional, conformance, interop-
erability, load, and scalability tests like

– Test verdicts,
– Matching mechanisms to compare the reactions of the
SUT with the expected range of values,
– Timer handling,
– Distributed test components,
– Ability to specify encoding information,
– Synchronous and asynchronous communication, and
– Monitoring.

A TTCN-3 test specification consists of four main parts:

– Type definitions for test-data structures,
– Template definitions for concrete test data,
– Function and test-case definitions for test behavior,
– Control definitions for the execution of test cases.

The data-type definitions are generated from the corres-
ponding XML schema of the Web service to be tested.
The templates are based on the corresponding data types
and the behavior of the service being tested, which consist
of sequences of requests and responses.
An approach to automated testing of Web services

with TTCN-3 therefore requires the following steps
(Fig. 3):

1. The structure of the test data is derived from the XML
definition, with a set of mapping rules from XML to
TTCN-3.

2. Test data (i.e., the concrete values for test stimuli and
observations) are generated.

3. Test configuration (i.e., the communication structure
between the test system and system under test) is de-
fined to respect the structure of the Web service to be
tested.

4. Test behavior (i.e., the sequences of test stimuli and
observations) is generated.

Fig. 3. Testing Web services with TTCN-3

5. The resulting TTCN-3 module is compiled to exe-
cutable code.

6. The tests are performed using a test adaptor, which
follows the mapping rules for test-data structures
to encode and decode the Web service requests
and replies and to perform the real communication
between the Web service under test and the test
system.

Currently, steps 1, 4, and 5 can be automated with the
help of tools. The automation for steps 2 and 3 requires
further work: for this step mainly test-generation ap-
proaches based on finite-state machines or labeled tran-
sition systems will be used. The test adaptor for step 6
has to be developed only once, so that it can be used for
any Web service and TTCN-3 test following the mapping
rules from step 1.

The tests

The individual tests in the framework follow the same ba-
sic procedure (Fig. 13): the main test component (MTC)
creates parallel test components (PTCs) according to the
services to be tested (the create statement) and accord-
ing to the load to be generated (the for loop). Every PTC
gets a concrete test function assigned and is started (the
start statement). Afterwards, the MTC awaits the ter-
mination of all PTCs (the all component.done state-
ment). The overall test verdict is the accumulated test
verdict of the local test verdicts of the PTCs.
The generic test cases can be controlled with a gen-

eral test-case control mechanism, shown in Fig. 4. First,
in the control part, the functionality of each service of-
fered by a Web service is tested. The results of the tests
are recorded and are used as a basis to guide the further
execution of the test campaign. If, for example, a func-
tional test for a service fails, it is meaningless to test
for service interaction and load aspects for this service.
Following the functional tests, load tests for the suc-
cessfully tested services are performed with an increas-
ing load. Afterwards, service pairs are taken in order
to test for service interaction. Finally, the successfully



I. Schieferdecker et al.: Distributed functional and load tests for Web services 355

Fig. 4. Execution control for the test framework

tested service pairs are tested for increasing load. The
services to be tested, the maximal load for a service
test, and the increase for the load tests have to be de-
termined by test execution only – these values are de-
clared as external constants in the TTCN-3 module rep-
resenting the test framework. The control part can be
enhanced to reflect other test combinations, e.g., to cover
not only tests for service pairs but also tests for service
sets.
Another aspect of this test framework is the evalua-

tion of the final verdict. In functional and conformance
testing, every failure detected by a single test compon-
ent will lead to an overall failure of the complete test.
This is also the built-in verdict mechanism of TTCN-3.
However, in load tests this is not applicable: a load test
checks whether certain thresholds like “99% of requests
are successful” are fulfilled. Therefore, a specific verdict
type has to be used to handle the collection of the local
PTC verdicts and to accumulate them according to the
requirements of specific tests.
For that, the MTC was extended to handle the arbi-

tration of PTC verdicts for the overall test verdict.

Realization with TTCN-3

This section completes the discussion of automating the
test framework with TTCN-3. A core element of the au-
tomation is the definition of an XML to TTCN-3 map-
ping, which supports the derivation of test-data types
from XML schema definitions and is therefore the basis
for testing of XML interfaces with TTCN-3. The mapping
rules from XML to TTCN-3 have been provided in [13].

Test data

Templates are used to define the concrete test data
to be used for requests to and for responses from the
Web service. Figure 5 contains example templates
to request the “Brachiosaurus” registration and to
receive the respective response. The “searchRequest”
template makes use of the “requestURL” template, which
defines where the information is located and indicates
with “Brachiosaurus” the dinosaur to be found. The
“Brachiosaurus” response template uses patterns to
indicate ranges of acceptable values. For example, the



356 I. Schieferdecker et al.: Distributed functional and load tests for Web services

Fig. 5. Test data for the Dino Web service

time should be given in the response and must have the
concrete value “Kimmeridigian.” The location should be
given as well, but it could be any place (this is specified
by use of the ? wildcard).
We work on approaches to the automated generation

of test data by using the classification tree method [11]
being implemented in the CTE tool. This method enables
the generation of exhaustive templates for requests. How-
ever, it needs to be extended to enable the generation of
response templates with patterns as well.

Test configuration

In addition to the structure of the test data, the test
configuration in terms of test components and ports has
to be generated (Fig. 6). We use a message port to ac-
cess a Web service. This port can transfer request and
response messages. Furthermore, we use a varying set of
parallel test components (PTCs) to represent separate
functional tests, service interaction tests, separate load

Fig. 6. Test components

tests, and load tests for service mixtures. Every PTC like
the SUT has a port to represent theWeb service interface.
In the example, the port type “httpTestPortType”

defines the capabilities of the Web service to accept
“search,” “update,” and “add” requests and to reply with
“dinosaur” information and “updateack” and “addack”
acknowledgements. Every PTC is of component type
“PTCType” and has one port “httpPort” and a timer
“localTimer” to control the timed execution of the test
functionality. The interface to the Web service under test
is defined by the component type “SUTType” and has
one port “httpTestSystemPort”.
The PTCs use the same basic test functions to initiate

requests and observe responses. The main test component
(MTC) controls the dynamic creation of the test com-
ponents according to the kind of tests. The tests with
several components are parameterized, so that the actual
numbers of test components emulating the use of a cer-
tain service vary depending on the current value of the
parameters.

Basic test function for the Dino Web service

The basic test function for the Dino Web service is de-
picted in Fig. 7.
It consists mainly of a request and response pair to

the Dino service. The search request for Brachiosaurus
“searchRequest” is sent and the local timer is started. If
the expected response “Brachiosaurus” is received, a pass
verdict is assigned. In addition, unexpected and no re-
sponse are handled – these cases (i.e., the second and
third alternative) lead to a fail verdict. The log informa-
tion logs the received response or the time-out and the
respective time stamp.

Fig. 7. Basic functional test for the Dino service



I. Schieferdecker et al.: Distributed functional and load tests for Web services 357

The map operation at the beginning enables the com-
munication of the PTC with the Dino Web service. This
basic test function is specific to the Web service to be
tested but has to be developed once and can then be
reused for the various types of tests presented above as
shown in Fig. 13.

Distributed test platform

The platform previously described to execute the load
tests is depicted in Fig. 8. We do not intend to make
an exhaustive presentation of all implementation details;
rather, we intend to provide an overview of the most im-
portant aspects.
The Test Console is the control point of our platform

and is an IDE (integrated development environment) that
provides support to specify TTCN-3 test cases, to create
test sessions, to deploy test suites into containers, and to
control the test execution.
Daemons are standalone processes installed on any

test device. They manage the containers that belong to
different sessions. Containers intercede between the test
console and components, providing services transparently
to both, including transaction support and resource pool-
ing. From the test viewpoint, containers are the target op-
erational environment and comply with the TCI (TTCN-
3 Control Interfaces) standard [16] for a TTCN-3 test
execution environment. Within a container, the following
specific test system entities exist:

– TE (TTCN-3 Engine) executes the compiled TTCN-3
code. This entity manages different subentities for test
control, behavior, components, types, and values and
queues entities that realize the TTCN-3 semantics.
– CH (Component Handler) handles the communica-
tion between test components. The CH API contains
operations to create, start, and stop test components,
establish a connection between test components
(map, connect), handle the communication operations
(send, receive, call, reply), and manage the verdicts.

Fig. 8. Distributed test platform architecture

The information about the created components and
their physical locations is stored in a repository inside
the containers.
– TM (Test Management) manages the test execution.
This entity implements operations to execute tests
and provide and set module parameters and exter-
nal constants. The test logging is also tracked by this
component.
– CD (Coding/Decoding) encodes and decodes types
and values. The TTCN-3 values are encoded into
bitstrings that are sent to the SUT. The received
data are decoded into abstract TTCN-3 types and
values.

The container subentities are functionally bound by
the TCI interfaces and communicate with each other
via a CORBA [18] platform. The session manager
mediation allows many component behaviors to be
specified at deployment time rather than in program
code. The platform adaptor is a gateway to host
resources (i.e., timers). The system adaptor defines
a portable service API to adapt to an SUT being
defined by the TRI (TTCN-3 Runtime Interface)
standard [17]. The test adaptor is a system-specific part
and enables flexibility by adapting to the SUT-specific
communication and timing. It is typically provided by
the test developer.
The whole execution platform is implemented in

Java JDK1.4. For the communication between con-
tainers we used the CORBA implementation provided
with JDK1.4. Following the standard specification
helped us to optimize our execution environment for
common operations across the test execution. The
advantage of adopting a pure Java solution shows in
hardware and OS independence, offering the possibility
to run tests in various scenarios and deployment
patterns.

Load test results

We have built a demonstration setup to illustrate the
functionality of TTCN-3-based distributed test execution
for functional, scalability, and load tests. The architec-
ture of the network we used for our evaluation scenarios is
presented in Fig. 9.
We used three standard PCs with 850-MHz CPUs and

256MB RAM, and another one with a 1.80-GHz CPU
and 512MB RAM. The computers were connected via
a 100-Mbps Ethernet hub. We installed on each com-
puter our test containers, which were connected via the
CORBA platform. On the last PC we installed our SUT,
the Web service. We analyzed the Web service response
times under varying load.
We started by distributing a few test components

running some functional tests (e.g., SeparateSearchFunc-
tional) and increased the load to up to 56 test components
being executed in parallel. We used only equal distribu-



358 I. Schieferdecker et al.: Distributed functional and load tests for Web services

Fig. 9. Test environment setup

tions of components by always running the same num-
ber of PTCs on each container. We were not interested
in finding out when the SUT would crash but rather to
experiment with increasing test load and measuring the
changes of the response times in relation to the increasing
number of test components.
As the pictures reflect, for very few test components

performing requests on the SUT, we measured a very fast
reaction of the Web service, under 0.4ms (Fig. 10). In-
creasing the number of PTCs (2 per container, 3 per con-
tainer, and so on) we noticed very quickly an increased la-
tency in the response time. For example, in Fig. 11, when
reaching the level of 14 PTCs per test container (which
means 56 PTCs at the same time), we measured response
times between 0.6ms and 1.8ms.
Further, we determined the average response time de-

pending on an increased number of PTCs. We started
with distributing 1 component per test container and
increased up to 14. Figure 12 reflects this dependency,
showing the average response time measured for different
test scenarios. For a better view of this dependency, we
interpolated the evolution curve.

Conclusion

TTCN-3 is a new test specification and implementation
technique (and the only standardized one) that is appli-
cable to a wide range of tests for various system tech-
nologies [14]. It is also suited to system-level testing. This

Fig. 10. Four components distributed on four test containers,
running functional tests

Fig. 11. Response times running 56 test components equally
distributed on the 4 test containers

Fig. 12. Average response times for increased load tests

paper discussed system-level tests for Web services with
TTCN-3. Beyond the functional and load aspects, fur-
ther aspects like security, privacy, availability, accuracy,
and usability need to be tested and supported by the test
framework. This will be addressed in future work.
The paper presented a flexible test framework for Web

services realized in TTCN-3. The tool environment sup-
porting this test framework consists of a TTCN-3 to Java
compiler TTthree [12], an XML to TTCN-3 conversion
tool, and a test adaptor for XML/SOAP interfaces. The
adaptor is generic and enables the testing of anyWeb ser-
vice using XML/SOAP interfaces. In order to use this
adaptor, the mapping rules from XML to TTCN-3 have
to be respected by the tests being defined in TTCN-3.
The test framework was developed for Web services

with XML/SOAP interfaces and provides functional, ser-
vice interaction, and load tests with flexible test configu-
rations and varying load.Which aspect of aWeb service is
tested is defined by basic test functions: a functional test
will check for the request/response behavior, a security



I. Schieferdecker et al.: Distributed functional and load tests for Web services 359

Fig. 13. Test cases for the different kinds of tests in the test
framework

test will check for data integrity, authorization, encryp-
tion, etc.
The provided test framework with its test hierarchy is

generic as it can be used for arbitrary Web services. The
specifics of a concrete Web service are handled within ba-
sic test functions emulating the use of the services offered
by aWeb service. These basic test functions are reused by
the kinds of tests provided in the test hierarchy.
A further key element of the test framework is the

automated translation of XML data to TTCN-3, so that
test skeletons can be generated directly from the spe-
cification of a Web service. For that, XML DTDs and
schemas have been analyzed and mapping rules have been
developed. These rules are realized by a conversion tool
from XML to TTCN-3. The conversion tool, together

with the TTCN-3 compiler and execution environment
TTthree, provides us a complete tool chain for test-data
type generation, test development, implementation, and
execution.
The principles of the test framework can be applied to

other systems and system components such as other mid-
dleware or Internet technologies as well. However, if the
data specification technique changes, another mapping to
TTCN-3 data structures and a corresponding test adap-
tor will be needed.
While the paper concentrates on functional and load

tests, more work is needed on the basic test functions
to address additional aspects. Furthermore, test patterns
beyond the presented functional, service interaction, and
load tests should be investigated. In any case, test au-
tomation will be essential to a sound and efficient auto-
mated system-level test process for the assessment of the
functionality, performance, and scalability of systems.
Future work will further elaborate methods for test-

data and test-behavior generation. In particular, the clas-
sification tree method will be investigated for potential
extension to the generation of TTCN-3 templates. The
generation of test-behavior skeletons from sequence dia-
gram specifications is under development. Special empha-
sis will be given to distributed test configurations with
appropriate coordination and synchronization between
test components.
The pure TTCN-3 solution for testing of Web ser-

vices is completed by the implementation of the TTCN-3
TCI standard in our distributed test-execution environ-
ment. The implemented platform is manageable, allowing
operators to deploy, monitor, and troubleshoot tests as
appropriate for the scenario. Future work will address the
problem of computing the best strategy to deploy test
components to get an optimized performance when exe-
cuting massive load tests.
The development of the UML 2.0 Testing Profile at

OMG [15] will ease the integrated design and develop-
ment of test systems together with the system itself –
system-level tests can be developed at an abstract level
on the basis of use cases and use scenarios. The mapping
of the UML 2.0 Testing Profile to TTCN-3 enables the
direct execution of such tests on TTCN-3 infrastructures.

References

1. W3C (2000) Extensible Markup Language (XML) 1.0. W3C
Recommendation, 6 October.
http://www.w3.org/TR/2000/REC-xml-20001006

2. W3C (2001) XML Schema Part 0,1,2: Primer, Structures,
Datatypes. W3C Recommendations, 2 May. http://www.
w3.org/TR/2001/REC-xmlschema-{0,1,2}-20010502

3. Jeliffe R (2000) The XML Schema Specification in Context.
http://www.ascc.net/∼ricko/XMLSchemaInContext.html

4. W3C (2000) Simple Object Access Protocol (SOAP) 1.1. W3C
Note 08, May.
http://www.w3.org/TR/SOAP

5. McLaughlin B (2002) Java & XML, 2nd edn, Chap 12: SOAP.
O’Reilly, Sebastopol, CA



360 I. Schieferdecker et al.: Distributed functional and load tests for Web services

6. Don Box MSDN magazine on the Web (2000) A young per-
son’s guide to the simple object access protocol: SOAP in-
creases interoperability across platforms and languages

7. ETSI MTS (2003) The Testing and Test Control Notation
TTCN-3, Part 1: TTCN-3 Core Language/ETSI ES 201873-1,
October

8. Schieferdecker I, Pietsch S, Vassiliou-Gioles T (2001) System-
atic testing of internet protocols – first experiences in using
TTCN-3 for SIP. In: 5th IFIP Africom conference on commu-
nication systems, Cape Town, South Africa, May 2001

9. Ebner M, Yin A, Li M (2002) Definition and utilisation
of OMG IDL to TTCN-3 mapping. In: 16th international
IFIP conference on testing communicating systems (TestCom
2002), Berlin, March 2002

10. ANTS (2004) (Advanced .NET Testing System), Red Gate
Software.
http://www.red-gate.com/ants.htm

11. Grochtmann M, Wegener J, Grimm K (1995) Test case de-
sign using classification trees and the classification-tree editor
CTE. In: Proceedings of the 8th international software quality
week, San Francisco, pp 4-A-4/1–11

12. TTthree (2004) (TTCN-3 to Java compiler). Testing Tech-
nologies IST GmbH. http://www.testingtech.de

13. Schieferdecker I, Stepien B (2003) Automated testing of
XML/SOAP based Web Services. In: Proceedings of the GI
Fachtagung “Kommunikation in Verteilten Systemen”, KIVS
2003, Leipzig, Germany, February 2003

14. Grabowski J, Hogrefe D, Rethy G, Schieferdecker I, Wiles A,
Willcock C (2003) An introduction into the Testing and
Test Control Notation (TTCN-3). Comput Netw J 42(3):
375–403

15. Schieferdecker I, Dai ZR, Grabowski J, Rennoch A (2003) The
UML 2.0 testing profile and its relation to TTCN-3. In: 15th
international IFIP conference on testing communicating sys-
tems (TestCom 2003), Cannes, France, May 2003

16. ETSI MTS (2003) The Testing and Test Control Notation
TTCN-3, Part 5: TTCN-3 Runtime Interfaces/ETSI ES
201873-5

17. ETSI MTS (2003) The Testing and Test Control Notation
TTCN-3, Part 6: TTCN-3 Control Interfaces / ETSI ES
201873-6

18. CORBA Technology and the Java 2 Platform (2002) Stan-
dard edn, Java 2 SDK, Standard Edition Documentation.
www.java.sun.com

19. Java 2 Platform (2002) Standard edn, Java 2 SDK.
http://java.sun.com/j2se/1.4/


